Co-existing Acartia lineages were parapatrically distributed along the estuarine gradient across systems on the US Atlantic coast. Genetic, morphological and ecological evidence indicated niche partitioning and ecological differentiation of A. tonsa
نویسندگان
چکیده
Title of Dissertation: CRYPTIC DIVERSITY, ECOLOGICAL DIFFERENTIATION AND POPULATION GENETICS OF AN ESTUARINE COPEPOD, ACARTIA TONSA DANA 1849 (COPEPODA: CALANOIDA) Gang Chen, Doctor of Philosophy, 2009 Dissertation directed by: Dr. Matthew P. Hare Assistant Professor, Department of Biology, University of Maryland, College Park Associate Professor, Department of Natural Resources, Cornell University, Ithaca (Current) Surprising genetic diversity has been discovered in marine holoplankton, organisms that “drift” in water currents throughout their life cycle. This discovery challenges our assumptions and suggests that holoplankton species may have limited dispersal and/or have adapted to small-scale oceanographic features. In this study, I investigated population genetics of Acartia tonsa, a holoplanktonic estuarine copepod containing deeply-diverged mitochondrial lineages, on the United States Atlantic coast. The study goals include: 1) assessing its cryptic species/genetic diversity; 2) inferring evolutionary and geographic origins of its cryptic lineages; 3) testing environmental associations of cryptic lineages; 4) inferring evolutionary and ecological processes/mechanisms underlying population diversification of A. tonsa. Phylogenetic analyses of DNA sequences from two gene loci, mitochondrial cytochrome c oxidase subunit I (mtCOI) and nuclear ribosomal internal transcribed spacer (nITS), resolved five morphologically cryptic, genetically diverged lineages that were reproductively isolated species based on genealogical concordance principle. Three co-distributed, deeply-diverged mtCOI lineages (X, S, F) showed significant population differentiation within lineages and contrasting phylogeographic patterns among lineages. Population structures and isolation by distance patterns detected for all lineages suggested that dispersal of Acartia lineages was more or less limited to adjacent estuaries; geographic isolation was a key mechanism underlying population diversification of A. tonsa. The highly diversified, relatively recent lineage F demonstrated a southern center of origin in Florida with northward stepwise diversification. Its distinct localized population structure and strong association with lowsalinity environments suggested that environmental stressors (such as salinity) could act as physiological barriers to gene flow, facilitating diversification of Acartia populations. Co-existing Acartia lineages were parapatrically distributed along the estuarine gradient across systems on the US Atlantic coast. Genetic, morphological and ecological evidence indicated niche partitioning and ecological differentiation of A. tonsa within estuaries. Multiple factors may have contributed to the observed parapatric distribution and niche partitioning, including selection by salinity, biological competition, and/or local adaptation. These findings in one of the best known estuarine copepods reinforce the general conclusion that marine biodiversity is substantially underestimated, not only in terms of species numbers, but also with respect to niche partitioning and the potential importance of ecological divergence in marine holoplankton. CRYPTIC DIVERSITY, ECOLOGICAL DIFFERENTIATION AND POPULATION GENETICS OF AN ESTUARINE COPEPOD, ACARTIA TONSA DANA 1849 (COPEPODA: CALANOIDA)
منابع مشابه
Ecological Niche Modeling of Mountain Vipers from the Raddei Clade in Iran, Caucasus and Eastern Turkey
Mountain vipers of the genus Montivipera, generally, and the species of the Raddei clade, specifically, are interesting examples of species neo-endemism in Iran, Anatolia, and the Caucasus. Given the critical conservation status of these species, it is necessary to identify their suitable habitats for prioritizing conservation measures. We modeled ecological niche of each species based on four ...
متن کاملAltitudinal Genetic Variations Among the Fagus orientalis Lipsky Populations in Iran
Nuclear simple sequence repeats (nSSRs), together with 16 different enzyme loci, were used to analyzegenetic diversity and differentiation among beech (Fagus orientalis Lipsky) populations along two altitudinalgradients in Hyrcanian forests of Iran. Both enzymes and nSSR analyses revealed a high level ofgenetic diversity in natural populations of F. orientalis. The genetic div...
متن کاملClimatic Facilitation of the Colonization of an Estuary by Acartia tonsa
Global change has become a major driving force of both terrestrial and marine systems. Located at the interface between these two realms, estuarine ecosystems are probably the place where both direct and indirect effects of human activities conspire together to affect biodiversity from phytoplankton to top predators. Among European estuarine systems, the Gironde is the largest estuary of Wester...
متن کاملEcological specialization in a spatially structured population of the thermophilic cyanobacterium Mastigocladus laminosus.
Laboratory evolution experiments suggest the potential for microbial populations to contribute significant ecological variation to ecosystems, yet the functional importance of genetic diversity within natural populations of microorganisms is largely unknown. Here, we investigated the distribution of genetic and phenotypic variation for a population of the cyanobacterium Mastigocladus laminosus ...
متن کاملPhylogeny and Historical Ecology of Rhodocoma (Restionaceae) from the Cape Floristic Region
A macroevolutionary analysis of macroecological relationships in Rhodocoma revealed a complex history of rapid ecological divergence, as well as genetic isolation via shifts in flowering times. The rate and extent of divergence observed among even the youngest of species pairs indicated that the selective forces driving these processes are strong enough to effect substantial amounts of ecologic...
متن کامل